Seasonal forecasting of water resources at Landsvirkjun

ARCTIC REGIONAL CLIMATE CENTRE (ArcRCC) NETWORK 13TH ARCTIC CLIMATE FORUM (ACF-13) May 22th – 23rd, 2024

Andri Gunnarsson, Manager of hydrological research Landsvirkjun / R&D

Landsvirkjun

Energy system in Iceland... ...from the perspective of resource forecasting

- 100% renewable sources
- +80% power intensive load
- No interconnections
- Annual natural variability high
- Climate is changing
 - More glacier melt observed since 1995
 - Provide opportunities for increased production
 - Less seasonal snow
 - · Dynamical changes in timing of water

Hydrology of the hydropower system in Iceland

- Glacier melt is on average 50-60% of inflow energy (33% of total production)
- **Seasonal snow** is about 5-15% of inflow energy
- Knowledge and understanding of winter snow extent and magnitude is important both on land and glaciers
- Groundwater / baseflow important in southern highlands
 - Provides inflows during winter

Relevant timescales of forecasting

- Short term (1-12 days) \rightarrow Operational control
- Outlook (1-6 months) \rightarrow Maintenance / short term energy contracts
- Long term (> 3-5 years) \rightarrow Medium/long term energy contracts
- Future flows, climate change (> 10-50 y) \rightarrow Investments/refurbishment

Hydrology of the hydropower system in Iceland

- Glacier melt is on average 50-60% of inflow energy (33% of total production)
- **Seasonal snow** is about 5-15% of inflow energy
- Knowledge and understanding of winter snow extent and magnitude is important both on land and glaciers
- Groundwater / baseflow important in southern highlands
 - Provides inflows during winter

Relevant timescales of forecasting

- Short term (1-12 days) \rightarrow Operational control
- Outlook (1-6 months) \rightarrow Maintenance / short term energy contracts
- Long term (> 3-5 years) \rightarrow Medium/long term energy contracts
- Future flows, climate change (> 10-50 y) \rightarrow Investments/refurbishment

Discharge anomalies at operational areas Landsvirkjunar

5 year running mean – Ref. preiod: 1986-2006

Water resources forecasting

Principle of operational decisions

- Models are used to forecast resource development to support operational decisions
 - Data driven, conceptual, physically based
- Field observations and remote sensing is used to provide real time estimates
- The challenge is to reduce variability in the forecast
 - Historical approach: Statistical representation of know history / climate adjusted (1956-2019)
 - Current hydrological conditions not considered
 - Future approach : Cross-scale integration of ground-based and remotely sensed observations

Production model

Economical model

Hydrological conditions at operational areas

Example of current conditons estimates

- Hydrological conditons (Past month)
 - Reconstruted flows compared to obs.
 - Reported as quantiles/percentailes
- Hydrological outlook (1-3 months)
 - Placement in "history"
 - Emphasis on "relevant" flow component

Sea surface temperatures near Iceland

- SST increase in 1995-97 (~1°C)
 - Air temperatures rise
 - Less seasonal snow, more glacier melt

Sea surface temperatures near Iceland

- SST increase in 1995-97 (~1°C)
 - Air temperatures rise
 - Less seasonal snow, more glacier melt
- Different patterns from 1995-2010 and 2013-2023
 - Strong significant correlation to glacier mass balace
 - · Low lovel clouds associated with cold blod anomalie
 - Impacts on surface energy balance of glaciers

What has changed? SSTs on the rise again

What has changed? SSTs on the rise again

What has changed ?

SSTs on the rise again

What has changed ?

SSTs on the rise again

>2020: rapid warming

Large scale atmospheric variability Relationships to hydrology

V

Atmospheric

Climate

- Understanding of large-scale circulation variability and its relationship to surface mass balance of glaciers in Iceland.
- Climate and large scale atmosperic variables
- Winter and summer mass balance for glaciers
 - Winter mass balance
 - Driven by precip input (tp)
 - Cold blob SST have a significant correlation
 - Summer mass balance:
 - Strong significant relationships to SST
- Coupling to ECMWF seasonal forecasting system

Large scale atmospheric variability

First results for Vatnajökull

